
PICOZINE#5

About math in pico8…

The beginning was a small part of energy in large space of nothingness: the point or in pico8 term,
the pixel. The screen space is a 2D surface organized in the form of a plane with orthogonal axis. If
you face the screen, one is going from left to right (x, abscissa) and the second from up to down (y,
ordinate). The origin of our space (0, 0) is the upper left corner. The screen is a grid of 128x128 pixels.
The two main differences between Euclidean geometry and the pico-8 screen is that the Y-axis
increases going down and the value on each axis aren’t continuous. This is a convention you must
accept (as the use of 1 to index the first item of an array). I admit I had trouble with the last ;-)

You can light up a pixel only with coordinates using integer. If you submit float values, pico-8 will
convert them to integers (FLR). The points table contains the coordinates of 3 points. Let’s draw the
corresponding pixels.

The points are the summits of a nearly equilateral triangle. Let’s draw line between the summits.

An equilateral triangle is a triangle in which all three sides are equal and all three internal angles are
congruent to each other and are each 60° (360° of the full circle divided by 3 summit). The sum of all
the angle of a quadrilateral (not crossed) is always 360°, e.g. square (4x90=360), pentagon
(5x72=360),… Which bring us two questions. How can we measure distance? How can we measure
angle? For the distance, Pythagoras gave us the solution (350BC) with his theorem relating the
lengths of the sides (a, b) and the hypotenuse (c) of a right triangle: a^2 + b^2 = c^2.

If we put our points at each summit of the hypotenuse, the length of the hypotenuse C is the distance
between them. The length of the side A is the absolute value of difference of their abscissas. The
length of the side B is the absolute value of difference of their ordinates. This can be applied to our
two first points P0(5, 10), P1(8, 5): (8-5)^2 + (5-10)^2 = C^2
If the parts of the equations are equal, their square roots is also: SQRT((8-5)^2 + (5-10)^2) = C
This give us the answer of the first question with the DISTANCE function.

Now we have to deal the second question which is a little bit more complicated. First, it's an angle
question, so we have to introduce some trigonometry. Next, pico-8 has his own way to do with
trigonometry. In pico-8 a full circle is… 1. To convert an angle in degrees to use in a trigonometric
function, you have to divide it by 360 before. To do the reverse operation, you have to multiply the
pico-8 angle by 360. Remind you this point each time you see the number 360 as divisor or
multiplicator. The sine is inverted which is nice because like that it suits the screen space, e.g.
PRINT(SIN(90/360)) returns -1.

It's time to meet an old friendly lady, a very useful function: arctangent with two arguments
(nickname atan2). In short, the atan2 function return the direction (as an angle) from one point to
another. In pico-8, you have to provide the abscissas difference and the ordinates difference between
the destination and the origin points. This can be applied to our two first points P0(5, 10), P1(8, 5):
ATAN2(8-5,5-10)*360 = 59.052 (so no it isn’t an equilateral triangle even if it’s look like).

The requisite groundwork has been covered and foundations laid to allow a little distraction. Why not
rotate a square (or any described form) around the Z axis? What's about Z axis? We're in 2D! Yes,
but… To rotate a form on the screen, we need to put a pin in it to turn around. We won’t break the
screen so we use the Z axis as substitute. The idea is to center the Z axis in the middle of the form.
Then we will use a trigonometric circle having his center where the Z axis go through our screen. The
radius of the trigonometric circle will be half the size of the form. In this context, rotating the form is
equivalent to add an angle to his current angle and calculate the new coordinates of each points.

The angle transformation formulae we need are below (where a is the current angle and b the angle
of the centered rotation):

cos(a+b)=cos(a) cos(b) – sin(a) sin(b)
sin(a+b)=sin(a) cos(b) + cos(a) sin(b)

For each point Pi(x, y) of our form, we can use a trigonometric circle that passes through this point.
The radius of the trigonometric circle is 1 so we have to change the scale of our coordinates with a
divisor (S). At this step, cos(a) = x/S and sin(a) = y/S :

cos(a+b) = x/S cos(b) – y/S sin(b)
sin(a+b) = y/S cos(b) + x/S sin(b)

The formulae give the coordinates of the point Pi(cos(a+b), sin(a+b)) after the rotation at the scale of
the trigonometric circle. We need them at our current scale, so we have to change the scale of Pi
coordinates:
Pi(S cos(a+b), S sin(a+b))

S cos(a+b) = S(x/S cos(b) – y/S sin(b))
S sin(a+b) = S(y/S cos(b) + x/S sin(b))

Which can be resolved to:

S cos(a+b) = x cos(b) – y sin(b))
S sin(a+b) = y cos(b) + x sin(b))

Pi (x,y) after a rotation of an angle b become Pi (x cos(b) – y sin(b), y cos(b) + x sin(b))

If I haven’t lost your attention, you may be happy to get some practice. Seriously, if you understood or
accept to use in state these tools (distance, direction, rotation), you could do whatever you want by
assembling them. To ease the form manipulation, we introduce the use of the object oriented
programming with FORM. The constructor accept a table as argument and uses its content to

initialize the properties of the new created object: abscissa (x), ordinate (y) of the screen position of
the center of the described form, direction (angle) and its drawing (points and lines).

The ROT method calculates the coordinates of the point (x, y) on the screen with the rotation of
ANGLE and the sliding to the FORM position. SELF.CA and SELF.SA are the cosine and the sine of the
SELF.ANGLE. The rotation of the form is done with the same angle for each points of the form. To
optimize, the cosine and sine are evaluated one time in the DRAW method and stored for reuse in the
properties of the object.

The DRAW method uses the same principle as the previously done for the triangle. It employs the
ROT method to convert the coordinates before drawing the line on screen. The table WORLD is
dedicated to the forms storage. In the pico-8 _INIT callback method, a new form (square) is created
and added to the world. You can change the form position, direction and drawing or add new one.

The two last pico-8 callback functions handle respectively the drawing and update events. For each
frame, the screen is erased and all DRAW methods of the forms in the world are called. The update
increments the angle of each form. The modulus 1 limits the angle range to the interval [0 , 1[.

Welcome in your world…

You are at one step to enter in your own world. We need just to add an avatar for the player to put
you in the center of the world.

The WORLD table evolves. It includes a screen offset (x, y) to scroll the axes when the player moves.
The table containing the forms is now in the FORMS table of the WORLD table. In the _INIT callback,
another FORM is added: the player itself. The forms are added to the WORLD.FORMS (rather than
WORLD). A new property is added in the constructor call: UPDATE. In fact, this is a callback method
where the code to manage the form can be put. The angle update of the square is moved in it. This
allows the forms to have their own behavior.

The pico-8 _DRAW and _UPDATE callback methods are modified to use WORLD.FORMS instead of
WOLRD and call F:UPDATE(F). The WORLD offset management is done by the FORM:ROT method by
adding it to the coordinates. In state, when the cartridge is launched, you can see the square who
spins and the vessel of the player.

The last - but not the least - action is to implement the update method of the player previously left
empty. The left and right arrows control the direction of the vessel. The front is on the up summit
(90° left from the drawing) so we have to subtract 0.25 (90/360) from SELF.ANGLE to get the moving
direction. The distance of each move is 1.3 (pixels) is decomposed on each axis regarding the angle of
the direction (A). The offset of the world and the position of the vessel are updated to move the
world around the player (leaving his vessel in the middle of the screen).

Optimize

Has done before for the cosine and sine of ANGLE, we can store the results of the calls of the method
ROT used while drawing the lines later. The table C in FORM:DRAW is dedicated to this usage.

Jean-Marc "jihem" QUERE
http://picoscope101.fr
@wdwave

